ON DETERMINING THE ROTATION OF LEFT-HANDED SOLUTIONS WITH THE GERMAN (Scheibler-Ventzke-Soleil) INSTRUMENT.

By Geo. S. Etster, Ph. D.

The following plan for determining negative rotation, in the absence of an instrument graduated for left-handed solutions, occurred to me some time ago. Though seeming quite obvious, I have not seen it in print.

If we use $\mathrm{a}+$ quartz plate reading n degrees to the right (either used instead of one of the cover-glasses, or sunk in an outside re: cess of one of the brass caps, and secured in place by a thin metal ring and three screws) in connection with a - solution of less rotating power the reading will bé N or $\mathrm{n}-\mathrm{x}=\mathrm{N}=-\mathrm{x}=(\mathrm{N}-\mathrm{n})$ where $-\mathrm{x}=$ the rotating power of the solution in degrees of the instrument. For instance:

The reading of the quartz plate is 90°.
The reading of the plate and solution is 66°, then $-\mathrm{x}=66^{\circ}$ -$90=-24^{\circ}$.

Or in other words, the solution has lowered the reading from 90° to 66°; hence is left-handed and is equal in value to the difference between 90° and 66°.

It is best to use a plate reading from 80° to 100° rather than one of much less thickness, as apart from the facility it affords for using a double normal solution for inversion, the value and equality of that portion of the scale is better under control.

I have not had a good opportunity to test the method since it occurred to me, but its success, as one acquainted with the principle of the quartz compensator will readily see, is merely a matter of detail.

NOTES ON THE AMMONIA PROCESS FOR WATER ANALYSIS (ILLUSTRATED BY THE PUMP-WELL WATERS OF BROOKLYN AND NEW YORK CITIES.)

By Nelson H. Darton.

It is with liesitation that I add to the now almost too voluminous literature of water analysis. The investigations of which I wish to give results have revealed however consid. erable matter of interest, especially in regard to the volatile nitrogenous matters which for some time have been known to be a con-

